Name: \qquad
\qquad

Module 6-A Study Guide

Test Date: March 14 ${ }^{\text {th }}$, Pi Day
Q1; 2 points, P (AD1)

Decide whether the relationships represented in the tables below represent a function and explain what makes it either a function or not a function. If the table does NOT represent a function, circle the ordered pairs that are the reason it is not.

Example: Part E "is" a function because: each input has exactly one output.
a)

Is Is Not
Because: \qquad
b)

Input (x)	0	2	2	3	3
Output (y)	5	5	5	5	6

Is Is Not

Because: \qquad Because: \qquad

Q 2; 2 points, P (AD4)
Each of the tables below represents a function.
Part A: Write the equation that represents each function.
Part B: Use the equation to determine the output for the new input given for each table.

PART A: Equation

a)

Input (x)	-1	0	1	2
Output (4)	2	6	10	14

b)

Input (x)	-5	1	7	13
Output (4)	-8	-2	4	10

c)

Input (x)	-1	1	3	5
Output (4)	-3	7	17	27

d)

Input (x)	-5	-1	3	7
Output (4)	-9	-1	7	15

Consider the relationships given below. Fill- in and circle an answer choice to make each statement true.
a) IN A GROUP OF PEOPLE:

Input (x): height
Output (y): weight

The relationship \qquad a function.
Is / Is Not
Because... two people that are the same height must be the same weight. two people might have the same height, but different weight. two people might have the same weight, but different height.
b) IN A GROUP OF PEOPLE: Input (x) : eye color

Output (4): shoe size

The relationship \qquad a function.
Is / Is Not
Because... two people that have the same eye color must have the same shoe size. two people might have the same eye color but a different shoe size. two people might have a different eye color and the same shoe size.
c) ON A CITY STREET:

Input $(x):$	a building
Output (y):	its street address

The relationship \qquad a function.
Is / Is Not
Because... one building can have only one street address. two buildings can have the same street address. one building can have more than one street address.
d) READING ON A THERMOMETER: Input (x) : degrees Celsius Output (y): degrees Fahrenheit

The relationship \qquad a function.
Is / Is Not
Because... one Celsius degree can have only one equivalent Fahrenheit degree. one Celsius degree might have more than one equivalent Fahrenheit degree. two Celsius degrees might have the same equivalent Fahrenheit degree.
a) Consider the following function. Which inputs and outputs could also be part of this function? Choose all that apply. There are 3 correct answers.
A. Input; 8; Output; 7
B. Input; -7 ; Output; 8
C. Input; 2 Output; -6
D. Input; 9 Output; 10

Input (x)	-6	2	1	7	8	-2
Output (4)	2	6	10	3	6	14

E. Input; 7 Output; 5
F. Input; -1 Output; 10
G. Input; -6 Output; -2
b) Consider the following function. Which inputs and outputs could also be part of this function? Choose all that apply. There are 3 correct answers.
A. Input; 3 Output; 7
B. Input; 7 Output; 3
C. Input; -1 Output; 3
D. Input; 2 Output; 9

Input (x)	-6	2	1	-1	7	-2
Oиtput (4)	2	6	10	3	6	14

E. Input; 1 Output; 3
F. Input; 8 Output; -2
G. Input; -6 Output; -2

Q 5; 3 points, PP (AD1)
Circle the relationships below that represent a function.
B)

C)

D)

E)

F)

A)

M)

G)

H)

I)

J)

K)

L)

P)

Q)

R)

Answer Key

Question 1: 2 points, P (AD1)
a) IS a function Because... each input has exactly one output.
b) Is NOT a function Because... one input has more than one output. $(3,5)$ and $(3,6)$
c) Is NOT a function

Because... one input has more than one output. $(4,2)$ and $(4,1)$
d) IS a function Because... each input has exactly one output.

Question 2: Part $A: 2$ points, P (AD4)
Part B: 2 points, P (AD4)
a) PART A: Equation: $y=4 x+6$

PART B: If $x=5 \quad y=4(5)+6 \quad y=26$
b) PART A: Equation: $y=x-3$

PART B: If $x=11 \quad y=11-3 \quad y=8$
c) PART A: Equation: $y=5 x+2$

PART B: If $x=7 \quad y=5(7)+2 \quad y=37$
d) PART A: Equation: $y=2 x+1$

PART B: If $x=24 \quad y=2(24)+1 \quad y=49$

Notes for Question 2:

- You know each table represents a function and you are being asked to write an equation which means there is a constant rate of change (slope).
- So - you only need to find the rate of change (slope) between 2 ordered pairs.
- Choose the easiest numbers to work with (probably not the negatives).

Question 3: 2 points, P (AD1)
a) Is NOT a function Because...
b) Is NOT a function Because...
c) IS a function Because...
d) IS a function Because...
two people might have the same height, but different weight. two people might have the same eye color but a different shoe size. one building can have only one street address.
one Celsius degree can have only one equivalent Fahrenheit degree.

Question 4: 3 points, PP (AD1)
a) B, D, F
b) A, C, F

Notes for Question 4:

- Look at the inputs, (x) given in the multiple choice selections.
- If the new number given (for x) is not already listed in the table, then it can't have more than one output, (4) - so it could be part of the function.
- If the new number given (for x) is already listed in the table, then look at the matching output, (4).
- If the new output, (4) is different from the one in the table, then it could not be part of the function.
- If the new output, (4) is the same as the one in the table, then it could be part of the function.
- Functions may have identical ordered pairs listed multiple times.

Question 5: 3 points, PP (AD1)
Circle the relationships that represent a function.
B
C
F
L
N
0

Fun Facts

1) 3.14 backwards is PIE!

2) It took 1,000 years to prove pi irrational.
3) Albert Einstein was born on Pi Day, 1879.
4) $\quad P$ and $p i$ are both the $16^{\text {th }}$ letters in their alphabets.
5) $22 / 7$ is used to estimate pi in fraction form.
6) The first major Pi Day celebration was in 1988.
7) The current world record for memorizing the digits of pi is 67,890 consecutive digits in 2005.
8) Mathematicians estimate that it would take 133 years for a person to recite the 6.4 billion known digits of Pi without stopping!
9) Pi has been calculated past the two-quadrillionth digit.
10) Even though the Greek symbol π wasn't adopted until the 1700s, the earliest references to the constant ratio between any circle's circumference and diameter occurred in Ancient Egypt around 1650 BCE
11) The first people to refer to the ratio between the diameter and the circumference of a circle were the Ancient Egyptians.
12) You can likely find your phone number (without the area code) in Pi. (http://angio.net/pi/)
